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I. User Guide 
 
Glendower:  I can call spirits from the vasty deep. 
Hotspur:       Why, so can I, or so can any man; 
                     But will they come when you do call for them? 
  
William Shakespeare, "King Henry IV. Part I. Act iii. Sc.1." 

1. Abstract 
An architecture for the event store component of the ATLAS data-handling system is 

presented. This document focuses on architecture, leaving design to a separate set of documents. 
The purpose of this document is to describe the concepts and top-level view of the event store to 
allow evaluation of suitability. It also will guide and govern the detailed designs of the 
components stipulated by the architecture, ensuring their interoperability and improving their 
uniformity in appearance and method. Thus, this document provides a language for discussing, 
evaluating and building the event store. 

The document is divided into a Users Guide, which focuses on concepts, and a Reference 
Guide that gives details needed to design and build a system. This document is aimed at software 
developers.  A document suitable for general ATLAS collaborators will be written in the future.  
For the moment, Section I, the Users Guide, will have to serve both audiences, but should be 
accessible. 

We try to define terms prior to use, but there is a glossary at the end. 

2. Architecture Motif – Extract and Transform 
The ATLAS event store problem is more than just the problem of storing and retrieving 

data from a file. The full problem is that of data management: how can data be cataloged, shared 
amongst users at a single site or copied between sites? How can one use the system to help plan 
and manage computing resources allocated to data access? An event store architecture must 
satisfy a set of requirements, the most important of which are (See[1]): 

1. Store and retrieve transient event data. 
2. Store event sample definitions (event lists, hereafter called collections). 
3. Support data transfer between sites. 
4. Support storage/retrieval optimizations, e.g., listing an event in multiple collections 

without repeated storage costs. 
5. The capabilities list can be implemented in several technologies. 
6. Data loss must not bias physics results. 
 
To facilitate data transfer and tape based data-stores, the first architectural decision is that 

an event, once written, may never be modified. Traditional tape-based High Energy Physics data 
handling systems had this constraint and supported event-content augmentation by forcing the 
user to write a new event with new or modified data objects.  We provide this “read a tape, write 
a tape” approach as a basic, easy to use, capability and add storage/retrieval optimization via three 
additional capabilities: 
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1. Event sharing – two collections may refer to the same event, stored only once 
2. Data Sharing – two events may refer to common data objects, stored only once 
3. Data Clustering – data objects frequently used as a group may be stored proximally  

 
In traditional systems, an event could be stored in only one format. The three storage 

optimization capabilities allow one to store events in a multitude of ways, each with different 
performance advantages.  We refer to these as different storage formats. For example, an archival 
storage format might store all parts of each event which are commonly exported close together in 
the same file.  A remote site might separate the analysis related data, reconstruction data and raw 
data into separate files to optimize the access to analysis data, e.g., AOD and TAG. See Sections 
5.4 through 5.9 for additional examples. 

Different storage formats do not imply different storage technologies; rather, different 
storage formats represent different optimization tradeoffs.  A requirement on the architecture is 
that all storage formats must be readable by the same job, requiring no job configuration changes.  

The thesis of the architecture presented here is that ATLAS sites have diverse needs and 
no single optimization choice will work for all purposes. Choices will differ site-to-site and user-
to-user within a site. Therefore, we adopt the following theme of extract and transform for the 
ATLAS data-handling architecture. The architecture will be able express many storage formats to 
satisfy different optimization needs.  The Tier 0 facility will be responsible for storing a copy of 
the data in a format optimized for record keeping and optimized for extraction of data for export 
to other sites.  This simple format is called the archival storage format.  Extracted data can be 
transported to a remote site where it can be rewritten, i.e., transformed, to a format optimized for 
some purpose. Again, storage format does not connote storage technology, but refers to the 
multitude of ways to apply event sharing, data sharing and clustering. 

This design provides traditional data-handling, i.e., "read a tape, write a tape" as the 
default job behavior. The database-managed file replaces the tape. Compared to traditional 
systems, extra features provided by the database architecture allow sophisticated data 
management optimizations. Each site has the freedom to choose between the pros and cons 
inherent in any optimization; however, it is the responsibility of the database architecture to 
ensure there is always a path to extract data into a set of files that can be transferred between any 
sites.  The cost of the extraction depends upon the optimizations chosen by the site and may be 
high; however, it is the responsibility of Tier 0 to maintain an archive in the archival storage 
format so that extraction is affordable. The database architecture is also responsible for ensuring 
site to site uniformity by ensuring that all storage formats can be read without reconfiguring a job. 

The position taken in this document is that the database architecture provides more than a 
set of top-level packages, classes, and interactions among them. It also provides a set of concepts 
and fundamental operations that form a language for describing, analyzing, and maintaining data-
handling scenarios and deployments. Specifically, this language can be used to analyze the 
architecture itself and, later, to design ATLAS installations.  To this end, Section 4 explicitly 
enumerates the capabilities.  Section 5 gives examples of how they are applied to several 
problems.  Part II, The Reference Manual (a sketch of a work in progress), enumerates classes, 
their interfaces, and their interactions. 

We return now to a discussion of the basic concepts in the architecture. 
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3. Data-management Optimizations: Extensions beyond basic read/write 
Traditionally, events were written to files that were archived on tape. If an event was 

selected into multiple physics categories, then it would be written out multiple times. If the event 
data needed to be modified, e.g., because tracking was re-run with new calibration constants, then 
the event would be read in, reprocessed, and written out again to a new file, archived on a new 
tape. These will be the fundamental operations in the ATLAS database. 

Although those are the basic capabilities, we wish to add several new capabilities that will 
reduce storage costs by avoiding data duplication and that will reduce I/O costs by reading only 
data actually needed. These capabilities, in concert with current database technologies, should 
provide tools capable of coping with the large ATLAS data volume. The new capabilities stem 
from four simple use cases that we describe from the users' point of view. 

UC1. If I have a set of events and choose to skim off a subsample, save me the cost of 
writing the events more than once. (Indexed event access. Reduce disk storage costs.) 

UC2. Allow me to avoid reading the full event when I only need a portion of the event to 
make my selection or perform my computation. (Clustering. Reduce I/O and data unpacking 
costs.) 

UC3. If I choose to abridge or summarize the data in an event (DST formation), allow me 
to navigate from the abridged event back to the fuller data from which it was derived. For 
example, allow me to select events based upon summary information (perhaps, 4-vectors and 
PID), locate rare events in the tails of distributions, and then navigate back to the full 
reconstruction to allow reconstruction and detector studies, perhaps navigating from there back to 
raw data. (Data sharing.) 

UC4. As an extension to item 3, if I choose to reprocess only a portion of an event, say, 
calorimetry, allow me to write out only the newly produced calorimetry results but avoid 
rewriting the other portions of the event, e.g., tracking, thus saving I/O costs and disk costs. 
(Data sharing.) 

Although voiced in terms of a physics analyst, these extensions are also the basis for site 
level optimization and are the high-level tool set for information managers at sites. Event indexing 
and data sharing reduce storage costs and clustering reduces I/O costs. 

It should be mentioned that CDF finds extensions beyond the essential read/write to 
introduce complexity and trouble that exceeds any gains. On the other hand, BaBar provides all of 
these and finds most of them essential to its operations. We choose to provide these extensions 
since a CDF-like deployment could be formed via a subset of the capabilities. 

Next we describe support for basic "read a tape, write a tape" plus the extensions for 
storage and read optimizations. This description follows the left-to-right flow depicted in Figure 
1. The architecture makes use of the Athena notion of output streams.  Output streams are the 
Athena mechanism for expressing event selections or physics categorizations of events. For 
example, selecting candidate events to three data samples requires that the job be configured to 
have three output streams. The framework architecture specifies how events are selected into 
each output stream [2, 3]. The output streams will be assigned collection names in the job 
configuration. 

A collection locates written events. Thus, the storage of collections is separate from that 
of written events. The advantage of separating the selection record from event storage is that an 
event can be referred to in many collections without being stored multiple times. This is the notion 
of Event Sharing. 
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Event sharing requires the ability to select events into multiple streams without storing the 
actual event data multiple times.  Streams can be configured to be writing or non-writing.  A 
stream configured for writing will cause an event to be written prior to registering an event in a 
collection.  A stream configured as non-writing will not cause a write, but will register an event 
previously written, presumably by another stream, into its collection. 

Notice that, given a set of output streams, any given event may be selected into all of 
them, or any subset, perhaps none.  Therefore it is possible that, for some events, only non-
writing stream(s) accept the event.  We have not set a policy for this eventuality. When a policy is 
chosen, it will be architectural and uniform among implementations. 

Having described navigation to events and event sharing between collections, we now 
describe data sharing between events.  As a design choice, we do not allow arbitrarily fine control 
of data object sharing.  In other words, events do not share things object by object.  Instead, they 
share data objects in groups, called sharing categories. 

Sharing is done by groups for three reasons.  First, data are often processed in stages and 
the output of one stage might naturally be shared with the next stage, e.g., the reconstruction 
stage might obtain its raw data by sharing. Second, re-reconstruction must produce groups of 
self-consistent, re-reconstructed objects. It would not make sense to redo the Tile Cell 
reconstruction without redoing jet processing. Sharing categories help express the groups of 
objects that are candidates for re-reconstruction. Third, we need to record a token (History 
Token) with the event data that serves to locate relevant history, e.g., calibration constants used. 
A history token can be held by the event as a whole and then by any sharing category where it 
indicates an override of the event level token.  In the case of re-reconstruction, the override 
records the new conditions used in the reprocessing. (See Sections 5.4 and 5.5 and below) 

So, while one can conceive of sharing data object by object, our view is that sharing in 
groups naturally reflects the way data are typically handled and provides a concise means of 
locating history information at an appropriate level of detail. Also, sharing categories are not just 
the unit of sharing, but also reflect the granularity of control for representing reprocessing 
operations. 

Given this background, we can describe the persistent event design.  The persistent event's 
responsibility is to locate persistent objects, to express sharing and to store the history tokens.  
Persistent objects are located via an EventNavigationHeader which has a dictionary style 
interface: data are registered in the header via a key.  They key is anticipated to correspond to the 
key used to record the transient data in StoreGate.  When storing data, you additionally provide a 
sharing category name to define which sharing category the data will be associated with. 

These ideas are illustrated in Figure 2 where two event navigation headers are shown, 
corresponding to two written events.  The event navigation headers locate three distinct groups of 
persistent objects, i.e., sharing categories, one of which is shared between the two events.  The 
navigation headers point to sharing category headers that define the groups and hold history 
tokens. 

Figure 3 brings all these pieces together. Flowing left to right, it shows two event streams 
bound to two collections.  The collections register event navigation headers that locate persistent 
objects via sharing category headers.  

Everything described so far has been navigational, explaining how events are located, how 
events can share persistent objects and how collections can share events.  Control of object 
writing is considered next.  
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In the Athena framework, converters are responsible for converting objects between 
transient and persistent forms.  The database architecture specifies the behaviors of converters and 
conversion services, uniform across all technologies. These behaviors provide data placement 
(clustering). We specify them now. 

At this time, we have not reached consensus regarding which responsibilities belong to 
converters and which belong to conversion services.  The original presentation left all 
responsibilities with the converters, and that is how we shall present the architecture here. 

Converters write data and we must be able to steer those data to resources.  Since an 
event may be selected into several streams, and because one may wish to put a complete copy of 
the event into each of the associated collections, a converter may be called more than once for a 
given event and may need to write to different locations each time: the storage resource used by a 
converter is a function of the stream an event is accepted into.   

We also must support storing different pieces of an event into different physical locations 
in order to support data clustering. For example, the raw data may go to one file, tag data to 
another and event summary data to a third: the storage resource used by a converter is a function 
of the piece of data being written.  

The architecture associates each piece of data in the transient event with one of several 
placement categories.  Placement categories define groups of persistent objects that are to be 
collocated on disk.  This is illustrated in Figure 4. 

Figure 4 shows four transient objects, X Y Z and W and their associated converters.  The 
converter (or perhaps conversion service) has been configured so as to categorize the transient 
objects into placement categories, i.e., has been configured to define groups of collocated objects.  
Z and X in the figure are identified with placement category one while W and Y are identified 
with categories two and three. Thus a desire to collocate Z and X has been expressed as has been 
the desire to separate the storage of Z and X from W and all from Y.  

The specific output stream name that has accepted the event is used to lookup storage 
resources for the various placement categories.  This is the role of the Resource Allocation Table 
(RAT) in Figure 4.  In that figure, the output stream that accepted the event (not shown) has 
storage resources listed in the RAT so that objects steered to placement categories one and two 
go to a file in the first disk and objects placement category three go to a file in the second disk.  If 
the event depicted was also accepted into another output stream, it is possible for a different set 
of storage resources to be located for that stream, and therefore the data would be written to 
different sets of files for the two streams. 

Figure 4 indicates that the writing process involves two steps.  We just described the 
writing step, which flows downward in the figure.  The second step, which flows to the right, 
registers the persistent objects in a navigation header so that they can be located in the future.  
The navigation header is then registered in one collection, or several collections in the case of 
event sharing. 

This completes the description of the extensions beyond the traditional  "read a tape, write 
a tape." The set of self-consistent, fundamental operations required to achieve these   extensions 
allows capabilities (has consequences) beyond the original four. Our view of this situation is as 
follows. We enumerated four basic capabilities we would like to have and now derive a set of 
functions to achieve them. You can consider these functions to be like the basic operations in a 
machine language: from them you can express many ideas. This fundamental set of operations 
form a language for expressing data-handling systems. That language can be explored to search 
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for expressible systems that behave unacceptably, even before building them. We can then attempt 
to modify the set of basic operations to preclude the unacceptable behavior or, failing that, choose 
to either forgo one of the four capabilities, or choose to not operate some expressible systems that 
we expect to be problematic. 

4. Fundamental Operations 
We envision a set of software capabilities plus an archival storage format such that 

archived data may be transformed into many deployment strategies, each tuned to a suit a 
particular need. The set of software capabilities fall into 4 genres: 

1. Data structural tools. 
2. Management-data services (meta data). 
3. Concurrency management services. 
4. Application interface. 
Data structural tools include, for example, a persistent event architecture that supports 

data sharing between events. Management-data services include, for example, collection lookups 
by name ("Jet sample") and status ("Good runs") and collection status (resources resident, 
remote, damaged, etc.). Management-data services also track used database resources and 
allocates new ones. Concurrency management services include, for example, file-locking.  

The 4 genres of capabilities are somewhat abstract. Here we enumerate capabilities at a 
level more like that in the 9-track tape example. Our purpose here is to challenge the reader to 
provide examples of essential things that cannot be done, given these capabilities. Another 
purpose is to provide a set of fundamental operations that can be examined for self-consistency 
and consequence-predictions. 

4.1  Event lookup, filtering and writing: 
There are two separate aspects to writing data.  The data must be stored and, in addition, 

navigational information must be updated to allow the data to be retrieved in the future.  With 
regard to navigation, a collection is used to locate a persistent event.  The persistent event is used 
to locate the actual persistent objects.  With regard to data storage, placement categories, defined 
below, are used to steer data to storage resource pools.  With this brief introduction, we turn to 
the capabilities list: 

4.1.1 The fundamental access model is that of indexed-sequential access: the event store stores 
data referred to by persistent events, and indices of persistent events, called collections. 
Collections allow indexed sequential lookup of events but do not actually hold the events. 

4.1.2 You specify a collection, or list of collections, for input. 

4.1.3 A read might fetch only a portion of an event. An event may be read even if some data are 
not resident. 

4.1.4 An Athena application can be configured with a list of output streams. Output streams 
represent selections or categorization of events.  An application can select an event into more than 
one output stream. 

4.1.5 Output streams are bound to collections via job configuration. 

4.1.6 Output streams can be configured as a non-writing stream, in which case the associated 
collection is made to index an event that has already been written. Non-writing streams exist to 



10 
 

allow events to be in more than one collection without incurring multiple-writing costs. 

4.1.7 Output streams can be configured as writing streams in which case the Athena conversion 
services will be invoked and the resulting persistent event will be indexed in the collection 
associated with the writing-stream.  One may have multiple writing streams in a single job so that 
events selected to several streams may all be deep copied to different output collections. 

4.1.8 Collections are write-once. They are write-locked upon close, like a file on tape to 
facilitate data export. (Physics samples grow in time and, therefore, will comprise a list of 
collections produced by many production jobs.  Additional capabilities may be added to assist 
physics sample management.) 

4.1.9 The persistent event’s purpose is to allow navigation to persistent objects. Such navigation 
locates a persistent object by a sharing category name (see next two items) and by a key. The key 
is usually that used in the transient event for the item being stored. (See Figure 5) 

4.1.10 Persistent events are write-once. To modify a persistent event, you must write a new one, 
either sharing data with the original (see next item) in order to reduce storage costs, or by copying 
all data. 

4.1.11 A persistent event may share data with another persistent event. The granularity of sharing 
is controlled to limit complexity. The unit of sharing is by groups of objects called sharing 
categories. (See Figure 2.) 

4.1.12 For each transient DataObject to be written or read, there is a converter that converts 
between transient and persistent forms (data writing) and that modifies the navigation information 
in the persistent event to allow future retrieval. (See Figure 4.) 

4.1.13 Converters are configurable in two dimensions: a) a sharing category for registering the 
data in the persistent event and b) a placement category to determine where data will be written as 
described next. 

4.1.14 A data-management service has pools of storage resources: there is pool for each 
placement category. For example a pool for a “Raw” placement category might have a set of files 
with names like raw00001.dat that will hold just the raw data. See Figure 4. 

4.1.15 The placement category for each converter is used to find a storage resource via a 
resource allocation table that maps the pairs (Placement category, output stream) to storage 
resource pools.  The map includes the output stream so that the same event may be written 
redundantly to separate physical locations when accepted into multiple streams.   

4.2 History tracking: 

4.2.1 The persistent event does not store history information, but it facilitates history tracking 
by storing a history token that may be used by clients to look up history information stored 
elsewhere. 

4.2.2 In addition to a history token associated with the persistent event, a history token may be 
associated with each sharing category in the persistent event. These express an override for data 
within that category, relative to the history token for the entire persistent event. 
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4.3 Resource Tracking and Data Transfer:  
We have provided operations that allow events to be selected into physics categories 

(output streams) and that allow event writing to steer events or pieces of events to one or  more 
storage pools (clustering).  To transport data site to site, one must be able to determine what 
storage resources need to be transported and must be able to copy them and then attach them to 
the remote site.  The capabilities below provide this. 

Note that, since the capabilities for event writing allow persistent events to share data, it is 
possible that storage resources may depend upon each other, e.g., a file may store events that 
share data with events in another file.  Therefore it is possible that attempting to export just a few 
events require the copy of several large files.  This would be an example of where the storage 
format was optimized for local read access, but not for data transfer.  The solution is simple:  use 
the capabilities above to copy the desired events to independent, simply formatted storage 
resources which then can be exported. 

Note also that the prime reason for transporting data is to allow data to be studied 
elsewhere. Since physics analysis requires one to know the pedigree of data in a sample, one must 
be able to say where transferred data originated.  To maintain data pedigree, there are various 
rules with regard to freezing below and with regard to write-once in the rules already presented, 
above. 

Now to the capabilities and rules that allow resource tracking and transfer: 

4.3.1 A file is the unit of physical storage.  It is unspecified whether the file is independent or is 
part of a database management system. A file holds event data, one or more collections, 
management data, or pieces of one of these. 

4.3.2 You can determine the list of files that store a collection or vice versa. 

4.3.3 A file is the unit of data transfer.  

4.3.4 Management services allows permanent close (freeze) of a unit of transfer. The freeze is 
recorded both in management data and in the transfer unit. A freeze is permanent. 

4.3.5 A transfer unit must be frozen prior to transport.  

4.3.6 A collection is the unit of transfer request. 

4.3.7 An Export Program receives a transfer request and produces a transfer control file plus a 
set of transfer units to transfer. 

4.3.8 An Import Program receives a set of transfer units and a transfer control file and installs 
the new data in the local data handling system. 

4.3.9 When files are installed, or created, in a data handling system, they are entered in a file 
location table which is used by core database code when opening files.  Because of  this 
indirection, information managers may move files to effect load balancing or to more effectively 
utilize tape based hierarchical storage systems. 

4.3.10 The Grid collaborates with Management Data services to formulate transfer requests. It 
achieves a transfer via collaboration with an export program on the export-side to produce a 
transfer control file and a set of transfer units and via collaboration with an import program which 
installs the data in the data handling system on the receive side, driven by the transfer control file. 
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4.4 Resource locking 

4.4.1 To be written.  

4.5 Authorization and security 

4.5.1 To be written. 

4.6 Schema management & data evolution 

4.6.1 To be written. 

5. Fundamental Operations: Examples 
In this section we give examples to illustrate the fundamental operations. 

5.1 How do I do the simple, traditional "read a tape, write a tape?" 
Before, you would have selected a tape volume and file number on that tape to specify the 

input, then written output to a disk file which later would have migrated to tape (or written 
directly to a volume/tape positioning number). Now, you do two things.  
1. Specify the name of the input collection, or list of collections to the event selector. 
2. Specify the name of an output collection. 

The default behavior of the system will be to create a default stream for you which will 
accept all events and that will be bound to your output collection in writing mode. All data will be 
clustered to land in the same file.  

5.2 How do I do the simple, traditional "read a tape, write a tape" but select events into 
two different outputs? 

This is similar to Example 1.  
• Specify the name of the input collection, or list of collections.  
• Declare two output streams, here called Selection1 and Selection2.  
• Associate the streams with decision-makers (you need two) in your job that define the 

selections.  
• Specify the name of an output collection for each output stream.  

5.3 How do I filter a collection?  
There is a collection I want to filter. I am still exploring the filter options and expect to 

write many filtered collections as I explore cuts but do not want to waste my disk allocation.  
This example is identical to Example 2, but you just need to add an additional 

configuration. After you declare the output streams instep 2, configure the streams as non-writing 
streams. The collections you create will refer to the physical events indexed in the input 
collection(s) rather than writing new ones. 

5.4 How do I share data? 
I have a collection of events with just raw data. I want to run reconstruction and save the 

results but do not want to copy the raw data into the output events, but want to save disk by just 
sharing the raw data between the input and output events. How do I do this? 

You do this through additional configuration of the output stream, but there is a pre-
requisite. You can only share data at the sharing-category level. Therefore your ability to share 
with an existing event depends upon how that event was written. In this example, if the first event 
was written with all of the raw data registered in the same sharing category, say "Raw," then 
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sharing is possible. In this case, we would configure the output stream for the new job to share 
"Raw." This declares that navigation header indexed by the collection we are about to write will 
point to the sharing-category header, keyed under "Raw," that is in the input event. 

5.5 How exactly do I get items X, Y and Z into the sharing category called "Trk" while 
putting W into the sharing category called "Calo?" 

In the job configuration, simply configure the converters for X, Y and Z to register their 
data in the "Trk" sharing category and W in the "Calo" sharing category. As a further illustration, 
in Example 4, the old job that wrote the raw data would have configured all of its converters to 
register their data in the "Raw" sharing category. 

5.6 How do I cluster data? 
How do I get objects of type X to be written to physically adjacent storage, Y to be 

written to physically adjacent storage, but have X and Y in separate places? 
Previous examples addressed data sharing, which is a navigational aspect. This example 

explores data placement.  
? ? Choose a placement category for X and a category for Y, say, Tag for X and Aod for Y. 
? ? Configure the X and Y converters, telling the X converter to use placement category "Tag" 

and the Y converter to use placement category "Aod." 

5.7 Can I steer data when writing without reconfiguring al l the converters? 
I am a site coordinator and my group wants to rerun the production reconstruction 

executable on a small sample locally. The production executable is sophisticated and tuned to 
categorize all the various outputs into half a dozen placement categories. There are 500 
converters involved. For simplicity sake, we want all the data to be placed in one file. How do I 
avoid checking out a dozen packages and reconfiguring 500 converters? 

This is one reason why the resource allocation table exists and why converters only 
categorize their data into a placement category and then use that category to query placement 
services which then tells the converter where exactly to place the data. In this example, the only 
action required is to configure the resource allocation table so that the half dozen placement 
categories all map to the same physical resource pool rather than half a dozen pools. By doing 
this, although the converters classify the data for placement, you tell the placement services to 
ignore the categorization and allocate all from the same pool. 

This should be the default behavior. Unless told otherwise, the RAT should map all 
placement categories into the same pool. This simplifies things for the least-trained users, who 
will be the majority.) 

5.8 How do I split apart a set of files containing objects that refer to each other?  
I am a site administrator. We imported a large collection of events that passed a loose set 

of cuts. We want to tighten cuts, separating the collection into two subsamples, but want to force 
the subsamples into separate files so that we only need to keep on one disk at a time. Note that 
the imported collection was divided over half a dozen placement categories, and we want to 
retain this clustering. 

This example is quite advanced. This is another example of placement. The job we set up 
is very similar to Example 2 where events were filtered into two streams. The default behavior, 
taken there, was to flow all the data out together to a single storage resource. Now what we wish 
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to do is to use not just two storage resources (two files) but two _sets_ of resources. Each set 
corresponds to the set of placement categories in the imported data.  

The purpose of this example is to emphasize that when converters write their data, their 
chosen placement category is interpreted through a resource allocation table by the data 
placement services. This level of indirection is not just a function of the converters placement 
category, but is _also_ a function of the currently selected output stream. Therefore, two output 
streams, bound to different collections, can both be configured as write-producing streams, can 
share (must share!) the same set of converters which categorize the transient data into placement 
categories the same in both streams, BUT, the final mapping to storage resource (files, roughly) 
can cause the data to go to two different sets of resources because of this stream dependent 
redirection in the RAT. To solve the problem in this example you configure two streams, just as in 
Example 2 and you configure the converters with placement hints to place the data just as it was 
in the imported data; however, in contrast to Example 2, you edit the resource allocation table 
configuration so that two different pools of sets of resources are used for the two streams.  

5.9 How do I move files from one server to another?  
At our site we have found that data in certain collections are used more than others and 

wish to move those collections onto a faster server and push the other collections onto a slower 
server.  How do I do this? 

This example explains capability 4.3.9.   To solve this problem, you must use the 
management data services to obtain the list of files used in the popular collections and in the less 
used collections.  You will move those lists of files onto the various servers according to your 
load balancing needs.  You must then change the file location table and change the locations of 
these files from their old ones to the new ones. 

Another example is when a tape based storage system is involved.  If someone requests a 
file to be loaded from tape, that file might be loaded onto any of a number of disk pools.  To 
avoid the cost of copying the loaded file into a standard location, you can edit the file location 
table to point to the spool area where the file was loaded. 

6. Fundamental Operations: Discussion 
We began with the traditional HEP data handling model of read a type, write a tape and 

then added on four new, basic capabilities to support site-level data management optimization, as 
described in Section 3. These capabilities added the concepts of event indexing, data sharing and 
data clustering.  In Section 4, we enumerated fundamental operations and rules to achieve these 
capabilities. 

 We must ask two questions.  Are these capabilities sufficient to satisfy the data handling 
needs of ATLAS? Are the capabilities few enough and simple enough that we can understand the 
consequences of their interoperation and demonstrate that the result is supportable and desirable, 
or are they too complicated?  The first question, regarding sufficiency, is somewhat addressed by 
the examples section, Section 5.  This section addresses the second question, regarding 
unacceptable or unexpected emergent behavior beyond those we sought. 

Given the early state of this document, the analysis will not be complete. In fact, it is 
largely absent; however, we wish to note the need for the analysis and comment on possible 
responses to problems discovered by the analysis.  There are two possible responses.   

If behavior emerges that we do not like, one possible response is to remove items from the 
capabilities list, or add additional rules until the undesired behavior is impossible.  One may find 
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that there is simply no way to provide a desired capability, say data sharing, without introducing 
the possibility of undesirable behavior.  In this first possible response, we would choose to forgo 
the behavior altogether, reducing the power of the system, e.g., remove data sharing and accept 
the cost of having to duplicate data on disk. 

Alternatively, if behavior emerges that we do not like, we may find that the undesired, 
emergent behavior only occurs in some, particular applications of the capabilities, or that the 
problems are problems to some users but features to others.  In this case, we may choose to not 
reduce the capabilities list, but take care to enumerate pitfalls and apply the system in a fitting way 
for any particular need. 

Put simply, what we really do not want are surprises. 
Fortunately, the list of capabilities is itself the tool to use to analyze the system.  We will 

work through some use cases in detail regarding files, events sharing data, export scenarios and 
see what consequences emerge and then decide what to do.  We can do this without building the 
software that implements the capabilities.  We turn now to a series of these use cases that we call 
“Interaction Examples.” (This is where the present document requires extension.) 

Interaction Example 1: Entanglement via non-writing and writing collections when events 
are sometimes selected and sometimes not. 

Interaction Example 2: Consequences of exporting and importing data when sites have 
non-identical definitions of resource pools. 

Interaction Example 3:  Need more…  

7. Deployments 
get the idea across: 

 
• fundamental operations as tinker toys => multiple constructions you can try to run. 
• these are deployments. 
• deployment can be good at one task/scenario/site but bad at another or bad everywhere. 
• distinguish deployment from architecture. 
• should be able to reject deployments without rejecting architecture: tuning and experience. 
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II. Reference Guide 
Note for future revisions:  somehow the concept of Domains has been missed in this 

document and must be addressed in subsequent versions. 

1. Introduction 
This section attempts more detailed description of how the capabilities in the Users' Guide 

section are provided.  This is an architectural description that enumerates various classes or 
subsystems, their basic interactions and responsibilities, but does not describe how these agents 
satisfy their roles.  That will be technology dependent and will require further design done in light 
of this architecture.  

Cavaet: This reference guide is incomplete. Only a few class diagrams are presented as 
placeholders for subsequent development and expansion. Eventually, there will be numerous class, 
interaction, and activity diagrams that will enforce the architecture on technology dependent 
implementations.  To exercise the premise that the architecture provides sufficient information to 
effect independent design on disparate pieces of the architecture, two engineers were given this 
document and asked to say if the architecture seemed feasible in Objectivity (one engineer) and 
Oracle (the other engineer) and asked to consider specific pieces, like the Database Action 
Observer (described below).  The document has shortcomings, but their feedback was positive 
and the architecture was evaluated as feasible, perhaps even straightforward. 

2. Common Elements 
There are a few classes that are shared among the four major subsystems that we will 

describe here.  These classes have few, if any, interesting interrelationships with each other or 
with other classes. 

There are several database entities that store and retrieve things with dictionary-like 
interfaces; therefore they store and retrieve things by keys.  So, we introduce a class called Key 
that provides operator ==. 

A number of entities in the various subsystems have names, for example storage resource 
pools.  We introduce a class called Name that has a method, name(), that returns a String. 

For the moment, we have assumed that the simplest choices for these classes will suffice, 
e.g., that we only need one key.  As the design proceeds in coming months, we expect to learn 
what things to add, e.g., perhaps hashing values for names and keys and order operators for keys. 

3. Data Structural Elements 
The primary responsibility of the Data Structural Elements is to provide navigation 

services.  The primary duties are 
• learning names of collections from a collection catalog, 
• navigating from a collection name to an actual collection object, 
• navigating from a collection object to a top-level header, 
• navigating from that header to actual persistent data items, and 
• represent the notion of sharing. 
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Figure 5 shows the architecture for providing these services.  Many of the methods are 
obvious, e.g., the Collection& lookup(Name) method in CollectionCatalog finds collections based 
upon their names.  We'll concentrate on the less obvious aspects. 

The Collection class method getIterator() is motivated by the Athena architecture.  In that 
architecture, event selection services work by producing an Iterator object that can iterate over a 
source of event data.  The Collection class thus says that, if you are writing an event selection 
service for some technology, you need to write, besides your selection service, a class that inherits 
from Collection and another that inherits from AthenaBlah::Iterator and then have you event 
selector locate the Collection via the CollectionCatalog and then obtain an iterator from the 
collection to return to the framework. 

Pushing in deeper, notice that Collections have 0 to N entities in them called EvtNavHdr.  
These are navigation headers and are the means for locating data with a persistent event.  Two 
points are to be made. First, Collections are sequential indices of EvtNavHdrs.  Second, given an 
EvtNavHdr, you can locate any piece of data associated with that event.  We turn to that now. 

An Athena-based converter doing a read will locate its data through the EvtNavHdr by 
using the lookup method that takes two keys; a Key that represents a sharing category and a Key 
that locates the data.  The intention is that the second key should be the same as the key used in 
the transient event.  Similarly, the store method stores a datum, again via those two keys. 

The makeShare() method is used to create a sharing category.  We do this because we 
wish to hide the existence of the ShareCategoryHdr, which is discussed below.  But the notion of 
sharing categories exists at the EvtNavHdr level, even if the headers do not, and some level of 
manipulation of sharing categories is needed.  Here, we are saying that it is possible to create new 
sharing categories for the categorization of data by calling makeShareCat.  Note that it is a bool.  
Further architectural work may allow the system to refuse to create a category in some 
circumstances.  But it shall always be the case that a store will fail if it attempts to store in a 
category that does not yet exist. 

The ShareCategorHdr exists to serve as a navigation collector, of sorts.  It exists to 
enforce the architectural decision that data can not be shared between events with control at the 
per-object level. Instead, groups of objects are shared, and these groups are called sharing 
categories.  The ShareCategoryHdr represents a sharing group.  Therefore, the top level 
EvtNavHdr does not navigate to the objects directly, but to the ShareCategoryHdr and this is 
_exactly_ how sharing is implemented:  two EvtNavHdr's that share data simply point to the same 
ShareCategoryHdr. 

The ShareCategoryHdr has an interface much like EvtNavHdr.  It has lookup and store, 
but now just on a single key.  EvtNavHdr uses the sharing category key to locate a sharing 
category and then defers the final data by calling lookup in the just-found ShareCategoryHdr. 

In short, behaviorally, EvtNavHdr is a dictionary of persistent objects.  However, 
physically, an EvtNavHdr is a dictionary of ShareCategoryHdr's and a ShareCategoryHdr is a 
dictionary of persistent objects. 

The getHistory and setHistory methods store and retrieve the History keys described in 
the users' guide.  Note that the History methods in the ShareCategoryHdr are intended to serve as 
overrides of the overall key in EvtNavHdr. 

Placeholder: explain how non-sequential access mechanisms are to be built in terms of 
these entities. 
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Separate documents will describe implementation of this architecture for Objectivity, 
Oracle and Root. 

4. Management Data 
Management Data services carries the responsibility for tracking resources used in the 

database.  For example, one must be able to determine what files are used by a collection or what 
collections (pieces) lie in a file.  Although the responsibilities are broad, at this time we only 
discuss issues related to tracking storage resources at the lowest level. 

Figure 6 shows the portion of the Management Data services that handle control of object 
placement when objects are being written by converters. First we must convey the notion of a 
storage resource and of a storage resource pool. 

Consider a job that is writing many events and assume that one has configured the job to 
write data into several placement categories, e.g., the placement categories of RAW, TAG and 
ESD.  Think of ESD as "everything else."  In this scenario, any given event will be split over three 
files, one for each of the placement categories.  If we are writing many events, those files may fill 
and we may need to open new ones.  Since our objective was to keep the storage of the three 
components separate, we'd like to monitor the storage resources (files) independently for each of 
the placement categories.  That is the notion of storage resource pools: we have a pool of files for 
each of the placement categories, e.g., we may choose a naming scheme like tag00001, tag00002, 
raw00001, etc., within the pools and may store them on different servers. 

Although the paragraph above intimates that a storage resource is a file, this may not be 
the case.  For example, in Objectivity, a storage resource would most likely be a container in a 
database, rather than a file.  Thus, the proper way to think of a storage resource is that, given a 
design within some technology, there will be an intention in that design to control the data writing 
done by converters.  Whatever the unit of control is within the design for that technology, that is 
what a storage resource would be for that design.  Sets of them correspond to storage resource 
pools.   

We now return to Figure 6 and explain the interactions there.  Before getting into the 
details, we first explain the intention.  We wish to produce an architecture in which converters can 
be controlled to steer data into placement categories and in which the placement categories can be 
mapped onto storage resource pools.  What we describe below explains two things. First how 
converters are controlled. Second, that the names of storage resource pools and placement 
categories are not hardwired in the system. However, to give data managers control over their 
systems, valid configurations must specify only resource pools allocated previously. 

StorageResource is the base class for all technology-specific storage resource classes.  The 
base class has common methods like hasRoom(), poolName(), etc.  Specific derivatives, like 
ObjyResource, implement these and add technology specific methods like getHint for 
ObjyResource and getTable() for OracleResource.  We will come back to this in a moment. 

The class template, PlacementService<T>, is an Athena service.  The template Parameter, 
T, is intended to be a derivative of StorageResource, e.g., one might use 
PlacementService<ObjyResource>. Converters call T& PlacementService<T>::getResource() 
(args give placement category ans stream name???) and obtain a strongly typed T. For example, A 
converter for Objectivity would use PlacementService<ObjyResource>, would call its 
getResource() method and would get an ObjyResource.  Because this is strongly typed, it has 
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access to the objectiviy specific aspects of the ObjyResource interface, in particular to the 
ooRef(ooObj) getHint() method. 

By virtue of this, converters have access to strongly typed, technology specific storage 
resource classes.  The converter does need to know which placement service to request, but we 
feel that is natural because the converter is technology specific. 

PlacementService also has a method configRAT that is used to configure the resource 
allocation table.  Recall that the RAT maps the pair, (placementCategoryName, StreamName) to 
a resource pool name.  The getResource(Name placementCatName, Name streamName ) method 
works by using the RAT to convert the input names to a pool name and then looking inside the 
placement service for a StorageResource associated with that pool name.  If none is present, then 
the PlacementService<T> creates a T and stores it under the pool name.  If one is present, the 
PlacementService<T> just returns it to the user.  It is subtle, but we have just described a 
bootstrap.  To fully understand what has just happened we must describe the 
StorageResourceManager<T>. 

A StorageResourceManager<T> is responsible for actually implementing policy with 
regard to storage resources.  For example, in Objectivity, it would know how many containers are 
in each database, how big each must be, what servers hold the databases, etc.  This is technology 
and design dependent.  From an architectural point of view, it is responsible for logging 
information, as needed, to answer queries  like, what files are in use, are they frozen, etc.  We 
have not shown here the interfaces for those queries.   

A StorageResourceManager<T> is, as for PlacementService<T>, expected to be 
instantiated only for T's deriving from StorageResource.  In the diagram, we show the example of 
ObjyStorResMgr being a StorageResourceManager instantiated on T being an ObjyResource.  
We show, schematically for now, methods addResource() and getResource() that manipulate 
resources in pools.  For example, a site-level event-store maintenance program would be written 
for a given technology that would add new storage resources to an event store. Our intention here 
is that getResource() can not satisfy requests unless someone has called addResource() and put in 
resources at some time in the past. 

Returning to the diagram, a StorageResourceManager<T> has a map of storage pools, 
StorageResourePool<T>.  When you call addResource(), you will add resources to one of the 
StorageResourcePools held in the StorageResourceManager<T>'s map.  A getResource works 
the other way around.  Why do we have both a StorageResourceManager and a 
StorageResourcePool?  I have no idea.  It's a viceral, first guess. 

Now we back up again and trace through the chain from the start.  A converter wishes to 
write data of type, say, ObjectVector<Jet>, stored in the transient store with key "KtJetList."  It 
has been configured to use sharing category "Calo" and placement category "ESD."  The 
OutputAgent has determined that the current event is to be saved onto a stream with name, 
"Stream1," that it is a writing stream and has caused an iteration over converters.  The 
ConversionService has reached our converter for ObjectVect<Jet>.  

Our converter uses its configured placement category name and the name of the current 
stream (we've not worked out how these got into the converter yet).  Suppose this is an 
objectivity converter.  It locates PlacementService<ObjyResource> and calls getResource(), 
passing in the placement category name and stream name.  See Figure 7.  The PlacementService 
looks in the RAT and locates a pool name and also an associated ObjyResource which is returned.  
The converter calls getHint() in ObjyResource which returns an ooRef that it uses to call operator 
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new to create the persistent object.  The converter also uses its sharing category to register the 
persistent object in the EvtNavHdr.   

Suppose the lookup in the RAT had failed which means that no one had yet tried a write 
to that pool before.  Then an ObjyResource would be created with the pool name we wanted to 
use.  Notice that ObjyResource knows how to locate the 
StorageResourceManager<ObjyResource> which it will defer to to actually know what resource 
it represents.  Also, by virtue of this knowledge, if the ObjyResource is full, it can be updated to 
refer to a new resource. 

This part of the architecture needs to be refined, but the reader should see an interplay of 
various agents that represent a technology independent description of a system that can steer 
converters, track resource utilization, and enforce that only allocated resources will be used. 

5. Athena Interface 
This section will be filled out in time but largely uses existing Athena architecture, e.g., 

Event selection services, Event conversion services, Output streams. 
What needs to be described here is how the capabilities described in the user section relate 

to configuration of the various Athena agents.  We also need to explain the flow of information 
through the chain. 

6. Concurrency Management 
Many database management technologies have a, perhaps implicit, state-machine behavior.  

You must initialize things prior to use, close things at various times, worry about transactions, 
etc.  The conundrum here is that we wish to centralize the policy of when these things happen, but 
it is many, many pieces of code that do things that might require these state changes.  For 
example, our system will have many converters in it.  A converter is a place where the system 
would know "we are about to write" or "we are only going to read."  Nevertheless, we do not 
want converters, or other objects, to make decisions about this. In particular, we do not want 
them to start or stop transactions.  One good reason for forbidding this is that some technologies 
may not even have the concept of a transaction.  Another reason is that, as policies change in 
response to system tuning, we have only one place to modify. 

We plan to handle this by making a Database Action Observer.  The Database Action 
Observer (Dao) is to be notified of actions taken by code at large.  For example, a converter will 
tell the Dao that it is about to write or is about to read.  This is not a request for service!  It is 
simply notification.  The programmer writing the at-large database code is to assume there is a 
stateless system and that the only action on his part is to make the notifications specified in the 
architectural document. 

The Database Action Observer will allow clients to subscribe requests for notifications of 
actions.  The idea is that if a technology requires state maintenance, then it the designers of that 
system will write a concurrency manager that will subscribe to the Database Action Observer and 
receive notifications of actions within the code. Because the notifications are of the form "I'm 
about to do X" and "I've just done X," these notifications can be used as incidents to drive a 
technology specific state-machine whose actions satisfy the requirements of the technology. 

One very simple example of a Database Action Observer client would be a monitor client.  
The monitor could run in parallel with any technology and measure rates or patterns of actions. 
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III. End Matter 

1. Figures 
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Figure 2: Navigation to persistent objects via Sharing Categories 
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Figure 4: Data Placement (Clustering) and Registration 
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+lookup(in name : Name) : Collection

CollectionCatalog

+getIterator() : Iterator

Collection

Gaudi Stuff::Iterator

+name() : String

Name

1

1

1 *

+lookup(in shareCatKey : Key, in datumKey : Key) : T
+makeShareCat(in name : Name) : bool
+getHistory() : Key
+store(in datum : T, in key : Key) : bool
+setHistory(in key : Key)

EvtNavHdr

+operator ==() : bool

Key

+lookup(in datumKey : Key) : T
+getHistoryKey() : Key
+store(in datum : T, in key : Key) : bool
+setHistory(in key : Key)
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I had trouble with genericity in Visio, so there is a
cheap hack in this diagram.  The class T represents
a generic type.  In other words, methods taking or
returning a T are likely to be method templates.

Keys are used for several purposes and the class now
is a placeholder; however, for the case of storing a datum

in a header, the intention is that the key have the same
value as for the transient event (for the datum).

 
Figure 5: Data Structural Representation 
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Figure 6: Athena Interface Representation 
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Figure 7: Management Data Representation 

 
 

2. Glossary 
• Stream 

A set of events selected by some criterion during production 
• Collection 

An index of events. 
• Management data 
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Sometimes called meta data, but we avoid that term as it is vague. Management data 
include lists of used files, associations between collections and files, etc. 
• Persistent Event 

Provides navigation to persistent objects. 
• Sharing Category 
 
• TBD 

To be distributed 
• Placement Category 
• Writing Stream 
• Non-Writing Stream 
• DST 

Data Summary Tape – Traditionally, full events were summarized and abridged. In 
ATLAS this role will be served by the Event Summary Data (ESD). 
• Query Engine 
• RAT 

Resource Allocation Table (See Section  3). The RAT associates storage resources with 
placement categories on an output stream by output stream basis. 

3. Bibliography 
[1] E. D. Frank, “ATLAS Database Requirements Analysis,” The University of Chicago, Enrico 

Fermi Institute and The Computation Institute 2001. 
[2] P. Mato and ATLAS Collaboration, “GAUDI LHCb Data Processing Applications - 

Framework - Architecture Design Document,” CERN - European Organization for Nuclear 
Research, Geneva, CH 1998. 

[3] ATLAS Collaboration, “ATLAS Computing Technical Proposal,” CERN - European 
Organization for Nuclear Research, Geneva, CH CERN/LHCC 96-43, 15 December 1996. 


